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using a post-yield fracture mechanics model 

PATIENCE A .  COWIE* a n d  CHRISTOPHER H .  SCHOLZ 

Lamont-Doherty Geological Observatory and Department of Geological Sciences, Columbia University, 
Palisades, NY 10964-0190, U.S.A.  

(Received 25 June 1991; accepted in revised form 27 April 1992) 

Abstraet--A plane strain model for a fault is presented that takes into account the inelastic deformation involved 
in fault growth. The model requires that the stresses at the tip of the fault never exceed the shear strength of the 
surrounding rock. This is achieved by taking into account a zone, around the perimeter of the fault surface, where 
the fault is not well developed, and in which sliding involves frictional work in excess of that required for sliding 
on the fully developed fault. The displacement profiles predicted by the fault model taper out gradually towards 
the tip of the fault and compare well with observed displacement profiles on faults. Using this model it is found 
that both (1) the shape of the displacement profile, and (2) the ratio of maximum displacement to fault length are 
a function of the shear strength of the rock in which the fault forms. For the case of a fault loaded by a constant 
remote stress, the displacement is linearly related to the length of the fault and the constant of proportionality 
depends on the shear strength of the surrounding rock normalized by its shear modulus. Using data from faults in 
different tectonic regions and rock types, the in situ strength of intact rock surrounding a fault is calculated to be 
on the order of 100 MPa (or a few kilobars). These estimates exceed, by perhaps a factor of 10, the strength of a 
well developed fault and thus provide an upper bound for the shear strength of the crust. It is also shown that the 
work required to propagate a fault scales with fault length. This result can explain the observation that the 
fracture energy calculated for earthquake ruptures and natural faults are several orders of magnitude greater 
than that for fractures in laboratory experiments. 

INTRODUCTION 

THIS paper is the first in a series of two papers on the 
subject of fault growth. Here  we present a model that 
takes into account the physical processes by which new 
fault surface area is created at the ends of a fault. Using 
this model, we show that the ratio of maximum fault 
displacement to fault length is related to the shear 
strength of the surrounding rock. The second paper in 
this series (Cowie & Scholz 1992a) derives expressions, 
based on energetic and geometrical considerations, that 
relate seismic slip increments on a fault to the growth of 
the fault over geologic time. 

Traditionally faults have been modelled as planar 
discontinuities or cracks in an otherwise elastic material. 
The reason for this modelling approach is that the 
material in which faults form, at least in the shallow 
crust, can support finite elastic strains. The elasticity of 
the Earth's crust is demonstrated by the occurrence of 
earthquakes and the flexural support of geologic loads. 
Various 'elastic' models have therefore been used to 
calculate stress and strain fields around a fault for 
specified conditions of displacement or stress on the 
fault surface (e.g. Chinnery 1961, Segall & Pollard 1980, 
Mavko 1982, Pollard & Segall 1987, Bilham & King 
1989, King et al. 1989, Stein et al. 1989). However,  in 
order to model fault growth one needs to relate the 
stresses at the tip of a fault to the fracture properties, in 
addition to the elastic properties, of the surrounding 
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rock. A basis for understanding fault growth is provided 
by the theory of linear elastic fracture mechanics 
(LEFM),  which relates the stresses at the tip of an 
idealized fault to the energy required for the fault to 
propagate. LEFM models have therefore been used to 
predict whether,  and in which direction, a fault tip will 
propagate when subject to changes in the local stress 
field. Lin & Parmentier (1988) used LEFM to model the 
propagation of a normal fault as overburden pressure 
increases with depth in the crust. Aydin & Schultz (1990) 
used LEFM to predict whether the propagation of a 
strike-slip fault is enhanced or retarded in the vicinity of 
a neighboring fault segment. However,  neither of these 
models specifically addressed the physical mechanism by 
which faults grow. Simple LEFM models, such as these, 
are limited in that it is assumed that the material around 
the fault tip is perfectly elastic. It is therefore implied 
that the inelastic processes (i.e. fracturing and frictional 
wear), involved in creating new fault surface area during 
growth, occur in a vanishingly small zone at the fault tip. 
Consequently, a simple LEFM model predicts that dis- 
placement on a fault should terminate abruptly with the 
maximum displacement gradient occurring right at the 
fault tip. This abrupt termination results in infinite 
stresses in the surrounding material in the vicinity of the 
fault tip, which is clearly unrealistic because real 
materials have finite strength. 

Traditionally the inelastic zone at the tip of a fault has 
been ignored because of its structural complexity. This 
may be a valid approach if it can be demonstrated that 
the inelastic zone is small (e.g. Pollard and Segall 1987). 
However,  by assuming that all the deformation is, to 
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first order, elastic, only elastic material properties (e.g. 
shear modulus) appear in the equation that governs 
displacement on the fault. Consequently, there is no 
basis for understanding the physical mechanism of fault 
growth; in order to understand how a fault grows, it is 
necessary to specifically consider the zone of inelastic 
deformation at the fault tip. 

Dugdale (1960) proposed a very simple model for 
inelastic deformation at the tip of a tensile crack in an 
elastic-plastic material. Goodier & Field (1963) (see 
also Bilby et al. 1963) subsequently obtained an ex- 
pression for the crack displacement profile of the Dug- 
dale model. The utility of the Dugdale model lies in the 
fact that the complexity of inelastic deformation is 
simply represented by a closing (or cohesive) stress that 
opposes the remote stress tending to open the crack. 
This closing stress corresponds to the stresses involved in 
plastically deforming the surrounding material. It is 
shown in this paper that Dugdale's approach can be used 
to develop a simple physical model for a fault that takes 
into account the inelastic deformation involved in fault 
formation and growth. 

LABORATORY AND FIELD OBSERVATIONS 

Until quite recently, observations detailed enough to 
evaluate an elastic crack model for faults were limited. 
Fault displacement data have mostly been gathered 
from field mapping of scarp heights and offset geologic 
markers; often only a few measurements have been 
taken on a single fault, most frequently the maximum 
displacement. Data on how displacement dies out 
towards the end of a fault, or on the structure of fault 
terminations, are invariably hard to obtain simply 
through lack of good exposure. Geodetic measurements 
are made at some distance away from a fault where the 
details of the fault tip make a small contribution to the 
regional strain field compared to the maximum amount 
of displacement in the center of the fault (Chinnery & 
Petrak 1967). Prior to the work of Rippon (1985), who 
mapped faults exposed in coal mines, very little was 
known about displacement on faults at depth, i.e. away 
from the effect of the free surface. 

In the last 10 years or so, detailed information on 

faults and the mechanics of faulting has accumulated, for 
example: measurement of fault displacement profiles 
(e.g. Muraoka & Kamata 1983, Gudmundsson 1987a,b, 
Walsh & Watterson 1987, 1989, Opheim & Gudmunds- 
son 1989, Peacock 1991, Peacock & Sanderson 1991, 
Villemin et al. in press) and fault termination strain 
fields (Hildebrand-Mittlefehldt 1979, 1980); studies of 
frictional wear on faults and the formation of gouge (e.g. 
Robertson 1982, Scholz 1987); laboratory and field 
studies of the growth of shear fractures and/or faults 
(e.g. Elliott 1976, Segall & Pollard 1983, Granier 1985, 
Etchecopar et al. 1986, Cox & Scholz 1988a,b, Martei et 

al. 1988). 
Structural mapping indicates that faults are not single 

shear surfaces, but complex zones of brittle deformation 
(Aydin & Johnson 1978, Gay & Ortlepp 1979, Segall & 
Pollard 1983, Sibson 1986, Wallace & Morris 1986). 
Most well developed fault zones are surrounded by 
zones of pervasively fractured rock (Chester & Logan 
1986). These fractures in many cases may be relics of the 
formation and growth of the fault: Cox & Scholz (1988a) 
used controlled laboratory experiments to show that 
Mode III shear cracks grow by generating and then 
coalescing arrays of tensile fractures ahead of the crack 
tip and that the shear surface eventually forms within a 
zone of fractured material. Figure 1 shows the pro- 
gression of shear deformation, as demonstrated experi- 
mentally by Cox (1988) (Figs. la & b) compared to the 
structure of a natural fault mapped by Wallace & Morris 
(1986) (Fig. lc). Knipe & White (1979) described a 
pattern of deformation, similar to that shown in Fig. 1, in 
shear zones in low-grade metamorphic terrains. Elliott 
(1976) observed what he termed a 'ductile bead', at the 
tips of propagating thrust faults: according to his de- 
scription, "a non-cylindrical fold complex travels just 
ahead of a sideways propagating thrust. The rocks are 
folded, the folds grow and tighten, and then the thrust 
fracture extends laterally into this strained mass". 
Recent experimental work by Lockner et al. (1991) used 
acoustic emissions from a deforming rock sample to map 
the real time development of a shear fracture. From the 
pattern of acoustic sources, Lockner eta[. (1991) showed 
that brittle deformation is initially distributed through- 
out the sample but as strain accumulates the defor- 
mation gradually localizes onto the ultimate failure 
plane. 

Fig, I. Structural evolution of a shear fracture or fault. (a) Array of oblique tension (T) fractures represent the early stages 
of damage ahead of a propagating Mode III shear crack produced during a controlled rock fracture experiment (fracture is 
propagating out of the page towards the viewer); (b) subsequent development of the damage zone depicted in (a) marked by 
the intensification of fracturing and the formation of linking fractures (L). (a) & (b) modified from Cox (1988). Published 
with permission from S. J. D. Cox. (c) Cross-section through a fault zone in the Coeur d'Alene mine in Idaho mapped by 

Wallace & Morris (1986). Published with permission from Birkha6ser Verlag AG, Basel, Switzerland. 
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Each of the observations cited above involves the 
gradual accumulation and localization of inelastic defor- 
mation leading to the formation and growth of a fault or 
shear fracture. This is the process which we try to 
account for in the fault model developed in this paper. In 
detail, the deformation mechanisms are observed to be 
complex, as already discussed, involving both tensile 
fracturing and shearing of the surrounding rock (e.g. 
Fig. 1). Segall & Pollard (1983) and Martel etal .  (1988) 
argue, based on field mapping of small fault zones in the 
Sierra Nevada granite, that faults in that area developed 
from pre-existing joints and did not grow in length by 
propagating as shear fractures through intact rock. The 
structural evolution of those fault zones involved the 
formation of tensile fractures which link the ends of en 
echelon joints, and the intensification of fracturing be- 
tween closely spaced joints undergoing shear. In detail 
the observations of Segall & Pollard (1983) and Martel et 
al. (1988) differ from those described, for example, by 
EIliott (1976), but we consider their observations to be a 
particular case in a wide range of deformation mechan- 
isms. For example, from field observations of similar 
small faults in granite in Massif de la Borne in France, 
Granier (1985) documented a much broader range of 
shear and tensile fracture mechanisms including some 
similar to those described by Segall & Pollard (1983). 

The importance of inelastic deformation in faulting is 
also reflected in the shape of fault displacement profiles. 
Figure 2 shows stratigraphic separation diagrams for two 
normal faults. In each case displacement is greatest 
towards the center of the fault and decreases gradually 
towards the tips. A simple LEFM model for a fault in a 
perfectly elastic material would predict an elliptical 
displacement distribution in which the maximum dis- 
placement gradient occurs at the fault tip (e.g. see 
Pollard & Segal11987), in contrast to the tapered or bell- 
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Fig. 2. Stratigraphic separation diagrams across normal faults: (a) a 
Plio-Quaternary normal fault in the Gulf of Corinth (modified from 
Higgs 1988). Published with permission from Blackwell Scientific 
Publications. Vertical scale in (a) is fault offset in two-way travel time. 
(b) The Saimo normal fault in the Kamasia Range of the Kenya Rift 
(modified from Chapman et al. 1978); K = separation of Cretaceous 
strata, Tr = separation of Triassic strata. Published with permission 
from the Geological Society of London. Vertical scale in (b) is fault 

offset in kilometers. 

shaped displacement profiles shown in Fig. 2. Our in- 
terpretation, supported by the results presented below, 
is that the tapering of the displacement profiles is a direct 
indication of inelastic deformation occurring in the vol- 
ume surrounding the fault, particularly in the vicinity of 
the fault tip. 

THE DUGDALE MODEL 

The Dugdale model, and a similar model proposed by 
Barenblatt (1962), are referred to as cohesion zone 
models for a crack tip. Within the engineering literature, 
such models are the primitive end-member models 
within a specialist field called 'post-yield' or 'elastic- 
plastic' fracture mechanics (e.g. see Latzko et al. 1984, 
Kanninen & Popelar 1985). The model for faults pre- 
sented here relies largely on qualitative and semi- 
quantitative observations. Therefore, we refer to the 
earliest papers on this subject where the basic principles 
are outlined and the parameters of the model can be 
related in the simplest way. Ida (1972), Palmer & Rice 
(1973) and Rice (1979, 1980), used this theory to de- 
velop the slip weakening model for earthquake rupture 
and a description of the energy fluxes through the crack 
tip region during propagation (see Rice 1968). Rudnicki 
(1980) and Li (1987) present comprehensive reviews of 
the applications of the slip weakening model to seismic 
rupture and creep events. Rubin (1990, 1991) con- 
sidered the applications of cohesion zone models to the 
propagation of igneous dikes. 

Dugdale (1960) considered a tensile (Mode I) crack 
cut in a material with an elastic-plastic rheology and 
loaded by a remote tensile stress (Fig. 3). As the tip of a 
crack produces a stress concentration, plastic defor- 
mation will initiate there if the stresses exceed the yield 
strength of the material, ~y. The crack then extends a 
distance s, plastically deforming the region ahead of the 
tip. Yielding continues until the stress at the tip of the 
plastic zone just equals %,. Beyond the end of the 
inelastic zone the material still behaves elastically. It is 
assumed that plane strain conditions apply so that the 
displacement and stress fields around the crack are 
functions of x and y and that there is no deformation in 
the third dimension (Fig. 3a). 

The Dugdale model is formulated by applying a uni- 
form tensile (opening) stress, or, over the total length of 
the crack, L, and a uniform closing stress, Oy, acting over 
the length, s, at the ends of the crack (Fig. 3a). The stress 
intensity factor, which determines the magnitude of the 
stress field around the tip of a symmetrically loaded 
crack is given by (e.g. Lawn & Wilshaw 1975, equation 
3.26): 

I+L,2 ~(x) 
K = 4  / / ~ j  ° ~ d x ,  (1) 

where x is the distance measured from the center of the 
crack, and o(x)  is the stress distribution on the crack 
faces. For the Dugdale model ~7(x) = or over the range 
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0 <- x <- L/2, and a(x) = ay over the range ( L / 2 - s )  <- x <- 
L/2. An expression for the size of the inelastic zone, s is 
obtained by equating the stress intensity factor, Ko, due 
to Or alone with the stress intensity factor, Ki ,  due to oy 
alone. Setting Ko equal to K,, s is then given by: 

s = L sin2 [~ar] Lzr2o~ ~ (2) 
[4OyJ 16~ 

Note that L is the final yielded length of the crack (Fig. 
3). For s -< 0.2L and Oy -> 2 a~ the approximation, shown 
in (2), differs numerically from the full solution by -< 
5%. 

Equating the stress intensity factors enforces the 
requirement that the stress near the tip of the yielded 
crack is finite and moreover does not exceed %. If the 
material is perfectly elastic, i.e. Oy becomes infinite, then 
s in (2) approaches zero. Conversely, if Or is held 
constant, then as Oy decreases s and thus L increase. The 
result expressed by (2) is illustrated in Figs. 3(b) & (c), 
where the crack opening displacement profile and the 
stress distribution in the plane of the crack are illustrated 

1 and 2 As for two finite values of the yield strength, ay ay. 
the yield strength decreases from oly to a2y, the length of 
the crack increases from L 1 to L 2 as the length of the 
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Fig. 3. (a) Dugdale model for a crack, of length L, loaded by a uniform 
remote tensile stress a r. Crack tip yielding extends the crack a distance 
s, doing work against a cohesive stress Oy. The crack is parallel to the 
x-axis and is centered about x = 0. (b) Crack opening displacement 
profiles and (c) stress distribution for the model shown in (a). For finite 
values of the yield strength,  Cry the displacement profile is 'bell-shaped'  
with the maximum displacement,  d~,,x , at the crack center, x = 0, and 
a displacement d o at inflection points at x = +_ ((L/2) - s). The peak 
stress at the crack tips (x = +_L/2) is equal to Oy. As oy decreases from 
o{ to ~ ,  s increases from s 1 to s2, and the length of the crack increases 
from L l to L 2 (indicated by the dashed and shaded curves, respect- 
ively). In the limit Oy ~ ~ the displacement profile becomes elliptical 
in shape and the stress at the crack tip becomes infinite (indicated by 

the thin solid lines). 

yielded zones increases from s1 to s2. When Oy becomes 
infinite the crack has an elliptical displacement distri- 
bution and there is a stress singularity at the crack tip 
(Fig. 3). 

Goodier  & Field (1963) showed that for the geometry 
shown in Fig. 3(a), the displacement profile along the 
length of the crack is given by: 

d(x) = (1 - v) Lay [ sin 2 - 
cos 0 Iog~ sin2 (02 O) 

2~p (02 + 0) 

(sin 02 + sin 0) 2] 
+ cos 02 loge (sin 0~ -- sin 0)2] ' (3) 

where v is Poisson's ratio and p is the elastic shear 
modulus. Note that (3) is the expression for the total 
displacement (in this case the total opening) on the 
crack, sometimes called the relative displacement (e.g. 
Pollard & Segall 1987). The trigonometric terms inside 
the bracket are the solutions to the elastic problem by 
the method of Muskhelishvili and are defined as: 

cos 0 = 2x/L for Ix] < L/2 and cos 02 = (L - 2s)/L. (4) 

The maximum displacement at the center of the crack 
(x = 0) is given by: 

dmax (1 - v) Loy  [ ( s i n  0 2 + 1) 2] 
= COS 0 2 1oge  --  • (5) 

• 2:rp (sin 02 1)2] 

In order to simplify (5) and to show the relationship 
between the ratio of maximum crack opening to crack 
length, d m J L ,  and the material properties ay and p, we 
may assume that the ratio ( L - 2 s ) / L  is a constant (i.e. 
the trigonometric terms in 5 are constant), in which case: 

dm~x/L oc ay/fl (6) 

and the ratio ar/ay is a constant. Alternatively, we may 
assume that dm~×/(L/2-s) is a constant but s is allowed to 
vary (illustrated in Fig. 3b), in which case: 

- -  oc cos ~ 1 - ~ .  (7) 
L [2oyj 8ay 

In both (6) and (7), if ,u increases, the ratio dmax/L 
decreases, which is what we expect from simple elastic 
crack theory, and as Oy increases the ratio dmax/L in- 
creases. 

By expanding the loge terms in (3) as series and 
truncating after the first term, in the limit that ay tends to 
infinity so that 02 ends to zero, (3) reduces to: 

d(x) - (1 - v)ar X/L2 _ 4x 2 (8) 

which is the equation for the displacement distribution 
on a crack in a perfectly elastic material. Note that in this 
case the displacement on the crack depends only on/~ 
and the remote stress or, and no longer on the material 
yield strength ay. 

The displacement profiles shown in Fig. 3(b) are 'bell- 
shaped' for finite values of Oy. There is an inflection 
point in the displacement profile at the beginning of the 
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inelastic zone, x = + (L/2 - s), and the magnitude of the 
displacement at this point, do, is given by (Goodier  & 
Field 1963, equation A9): 

do = 2 (1 - v) LCry cos 02 [1Oge (sec 02)]' (9) 
(Y 

a 

Main points of  the Dugdale model 

The Dugdale model is a plane strain model for inelas- 
tic deformation at the tip of a Mode I crack. For the 
purposes of the following discussion the main points of 
the Dugdale model are summarized as follows: 

(i) the displacement profile predicted by the model 
tapers out gradually towards the crack tip; 

(ii) the peak stress at the tip of the crack just equals Oy; 
(iii) the material beyond the tip of the crack still 

deforms elastically; 
(iv) the tapered shape is due to the presence of the 

inelastic zone at the tip of the crack; 
(v) the size of the inelastic zone, s, decreases as the 

yield strength, Oy, of the material containing the crack 
increases; 

(vi) as Cry approaches infinity (perfect elasticity) the 
Dugdale model becomes equivalent to a simple LEFM 
model; the crack opening displacement profile becomes 
elliptical in shape and the stress at the crack tip becomes 
infinite. 

APPLYING THE DUGDALE MODEL TO FAULTS 

The implications of using a model for a Mode I crack 
in a homogeneous material to describe Mode II or Mode 
III fault growth in a heterogeneous material like rock are 
clearly non-trivial. However,  the reason we use this 
model is that it potentially provides a simple description 
of a complex process that is poorly understood, namely 
the role of inelastic deformation in fault development. 
Furthermore,  the model invokes the requirement that 
for a crack at equilibrium under a system of applied 
stresses the peak stress at the crack tip cannot exceed the 
strength of the surrounding material. Equilibrium, or 
stable growth is a fundamental characteristic of fault 
propagation through the Earth 's  crust. We will show 
later that the basic characteristics of the Dugdale model, 
listed in the summary points (i)-(v) above, are also 
consistent with specific observations of faults. 

Strictly speaking, the theoretical description of the 
Dugdale model pertains only to large faults, which are 
those that have lengths greater than the thickness of the 
brittle upper crust. Large faults grow by increasing their 
length (mapped trace length) while their down-dip width 
remains approximately constant, and are thus two- 
dimensional structures which may be modelled using a 
plane strain model. However ,  the conceptual frame- 
work for fault growth provided by the Dugdale model 
applies equally to small faults. We discuss the possible 
differences between small and large faults below. 

fault center ~ fault tip 

@ © @ 
Fig. 4. Adaptation of the Dugdale model to a fault. Three stages are 
defined in the structural evolution of an idealized fault from the tip 
towards the center, approximately corresponding to the sequence 
depicted in Fig. 1. Stage (1): arrays of fractures; stage (2): coales- 
cence of fractures to form an irregular immature fault; stage (3): well- 
developed fault achieved through continued mechanical wear as 
displacement accumulates, o, is the remote stress driving displacement 
on the fault indicated by the large left-lateral arrows. The frictional 

resistance on the fault is indicated by the thin arrows. 

Following the formulation of the Dugdale model 
described above, it is assumed that the fault is loaded by 
a constant remote shear stress. The stress field across a 
deforming region will be maintained if the faults form 
and grow gradually and continuously (at least in a time 
averaged sense) in response to the imposed far field 
strain. The advantage of using a stress boundary con- 
dition is that the displacement on the fault can be related 
to frictional stresses on the fault surface and the shear 
strength of the material in which the fault forms. 

In the Dugdale model for a crack in an elastic-plastic 
material, the yield strength corresponds to the stress at 
which the material no longer behaves elastically but 
starts to flow. For an elastic-brittle theology it must 
correspond to the stress at which the material begins to 
fracture. However,  rocks often contain many flaws 
('Griffith Cracks') while still behaving in an overall 
elastic fashion. In the fault model we equate the material 
yield strength with the macroscopic shear strength, oo, 
of rock at ambient pressure and temperature conditions. 
At a microscopic scale the shear strength is due to 
fracturing across grains and sliding along intragrain 
contacts (e.g. Tapponier  & Brace 1976), both of which 
are pressure dependent processes. Therefore,  although 
the shear strength is primarily a function of lithology, it 
is not a constant material property but will be affected by 
confining pressure (e.g. Scholz 1990, fig. 1.12). 

Here we argue that the cohesion zone in the Dugdale 
model corresponds to a zone near the fault tip where the 
fault surface is beginning to form but no through-going 
sliding surface is yet developed. Figure 4 shows a radial 
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cut across an idealized fault surface illustrating the 
change in structure of the fault from the tip towards the 
center, based on the evolutionary process depicted in 
Fig. 1. In stage 1 (Fig. 4), right at the fault tip, the 
surrounding rock is broken down by the formation of 
fractures. These fractures gradually coalesce to form an 
immature slip surface that is irregular and discontinu- 
ous. As the slip surface starts to accumulate displace- 
ment, the process of frictional wear smooths out the 
irregularities and an intermittent layer of fault gouge 
starts to form (stage 2, Fig. 4). Stage 3 in Fig. 4 rep- 
resents the well developed fault surface which we 
assume characterizes an established through-going 
fault. These stages of development are similar to those 
described by Sibson (1988) based on observations from 
various published field studies. 

The structural evolution shown in Fig. 4 is rep- 
resented, in the fault model, by a varying shear resist- 
ance on a planar fault surface illustrated by the small 
arrows shown in the figure. The resistance to sliding on 
the fault surface is largest at the fault tip, where fractures 
first form and the fault is not well developed, but 
decreases as the displacement accumulates on the fault 
surface. Near the tip, the frictional resistance is a func- 
tion of fracture development in rock, and as the dis- 
placement across the fault tends to zero, the frictional 
resistance must approach the shear strength, oo, of the 
surrounding rock. However,  over the bulk of the estab- 
lished fault, the frictional properties are largely deter- 
mined by the gouge layer that separates the sliding 
surfaces. Therefore,  the well-developed fault is charac- 
terized by a residual frictional resistance, of. During the 
initial stages of fault formation, mechanical erosion or 
wear of the fault surface is very high but as the fault 
continues to evolve with additional displacement it be- 
comes a more continuous feature and can accommodate 
slip more easily. In the model, we call stages 1 and 2 in 
Fig. 4 the frictional breakdown zone of the fault (f.b.z. in 
Fig. 5). The frictional breakdown zone encompasses any 
distributed fracturing of the surrounding rock near the 
tip and the immature fault surface when the resistance to 
sliding exceeds, of. 

The relationship between frictional stress and dis- 
placement, described above, would imply a gradual 
decrease in the stress across the frictional breakdown 
zone of a fault. Ida (1972) considered a model in which 
oy (in the Dugdale model) varies in the inelastic zone 
and found that it is the value of Cry that determines the 
magnitude of the stress concentration at the crack tip not 
the details of how it varies. Therefore,  we approximate 
the increase in frictional resistance near the fault tip by a 
simple step (see Fig. 5). 

Assuming that the accumulated displacement on a 
fault may be modelled as a freely-slipping crack with a 
residual frictional shear resistance, af, the parameters or 
and Oy in equations (2)-(9), become (O'a--O'f) and (ao-Of), 
respectively. In this case, o~ is the remotely applied 
shear tress loading the fault and oo is the shear strength 
of the surrounding intact rock. We adopt the convention 
that L is the length of the fault trace measured on a plane 

at, or parallel to, the Earth's surface (independent of 
whether it is a dip-slip or strike-slip fault). The length of 
the frictional breakdown zone, s, in this case is measured 
in the direction along the profile of a fault and corre- 
sponds to the region where the displacement tapers to 
zero with a convex-up shape (see Fig. 5). The displace- 
ment, d o , is the offset across the fault at the beginning of 
the frictional breakdown zone (x = L/2 - s) and accord- 
ing to this model do coincides with an inflection point in 
the displacement profile (see Fig. 5). 

Figure 6 shows four end-member solutions to 
equations (3) and (5) for different assumptions concern- 
ing (as, - af) and (Oo - af), for a fault which accumulates 
displacement and increases in length over the time 
period from t I to  12. This figure is arranged to show (from 
left to right) for each of the possibilities (Figs. 6a, d, g & 
j), the resulting relationship between maximum fault 
displacement and length (Figs. 6b, e, h & k) and the 
corresponding displacement profiles and stress distri- 
butions along the fault (Figs. 6e, f, i & l). In the first two 
cases (Figs. 6a & d) (o~ - of) is not constant but 
decreases or increases as the fault grows. If (aa - of) 
decreases with time then the ratios s/L and dmax/L 
decrease as the fault grows (Figs. 6b & c). If (a~ - of) 
increases with time then the ratios s/L and dm~x/L 
increase as the fault grows (Figs. 6e & f), although this 
solution is no longer valid when (05, - of) exceeds 
( a o - o f )  because it implies that the rock fails cata- 
strophically. Both of these solutions (Figs. 6a & d) fulfill 
the requirement that the maximum stress at the fault tip 
equals the rock shear strength, ao, for the actively 
growing fault. The solution obtained if (a~, - af) is 
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~ f a u l d  o ~ t i p  

(i (x) 

% - -  

( i a - -  

(If i ..... 
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Fig. 5. (a) Displacement profile predicted by thc model as a function of 
distance along the fault trace from the center (x = 0) out to the tip (x = 
L/2). (b) Variation of frictional resistance along the profile shown in 
(a) according to the structural evolution of the fault illustrated in Fig. 
4. At the fault tip, where displacement is zero, frictional resistance 
approaches the shear strength of the surrounding rock, o,,. Towards 
the center of the fault the frictional resistance equals the residual 
frictional value of the well-developed fault, of. Numbered regions 
refer to stages indicated in Fig. 4, f.b.z, is the frictional breakdown 
zone of the fault of length, s, and d o is the breakdown displacement 
which coincides with an inflection point on the displacement profile. 
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constant but (ao - o f )  increases, is shown in Fig. 6(g). In 
this case a linear relationship is obtained between dmax 
and L and the ratio s/L decreases through time (Figs. 6h 
& i). The  so lu t ion  shown in Fig.  6(j) c o r r e s p o n d s  to  the  
case where  bo th  (aa - of) and  (~o - of) are  cons tan t  
t h rough  t ime.  F o r  this so lu t ion  the ra t ios  dm~x/L and s/L 
are  cons tan t ,  i .e.  dma x and  s increase  l inear ly  with the  
inc rease  in L and lines of  cons tan t  dma~/L ra t io  corre-  
spond  to cons tan t  va lues  of  o,, (Fig.  6k).  

The  so lu t ion  shown in Figs.  6(j) ,  (k) and  (1) is the  most  
phys ica l ly  r e a sonab l e  so lu t ion  for  the genera l  case.  F o r  
e x a m p l e ,  cons ide r  a fault  in which d i sp l acemen t  accrues  
by a r epe t i t ion  of  ea r thquakes .  Slip on the fault  is then  
g o v e r n e d  by stat ic  and  dynamic  fr ict ion coe f f i c i en t s /~  
andkt d on the  well  d e v e l o p e d  faul t ,  so that  Oa = kt.~ On and 

crf = ktd o~, whe re  o n is the  effect ive no rma l  stress on the 
fault .  T h e n ,  when o ,  does  not  vary  with fault  length,  
( a ~ -  of) var ies  only  with ~ - kid). Thus  the  cases 
shown in Figs. 6(a)  & (d) imply  tha t  fr ict ion on the well 
d e v e l o p e d  po r t i on  of  the  fault  con t inuous ly  changes  as 
the  fault  grows.  This  seems  u n r e a s o n a b l e ,  since af ter  the  
init ial  b r e a k d o w n  fr ic t ion should  be  scale i n d e p e n d e n t  

(Scholz, 1990, pp. 91-92). The case shown in Fig. 6(g), 
on the other hand, assumes that (% - ere) increases as 
the fault grows. If anything, we expect that % should 
decrease  accord ing  to the  size of  the  inelas t ic  zone ,  i .e .  
Oo oc 1/V's (see Scholz 1990, pp.  28-29) ,  in which case we 
ob ta in  the  so lu t ion  shown in Fig. 6(b)  with S/L increas-  
ing, so this so lu t ion  does  not  seem real is t ic  e i ther .  
Acco rd ing ly  the  case that  is cons ide red  fur ther  in this 
p a p e r  is the  case where  ( (7  a - -  O f )  and (o,, - of) are  
cons tan t  dur ing  growth .  

As  a consequence  of  the  l ines of  a r g u m e n t  p r e s e n t e d  
in the  above  fault  m o d e l  we also conc lude  tha t  the re  is no 
a priori reason  why small  faul ts  ( those  smal le r  than  the  
th ickness  of  the  br i t t le  crust)  should  exhibi t  a scal ing 
re la t ionsh ip  be tw e e n  fault  d i sp l acemen t  and length  that  
is d i f ferent  f rom large faults .  This  is because  the  l inear  
re la t ionsh ip  dep i c t ed  in Fig. 6(k)  only  d e p e n d s  on  the  far  
field stress and  the shear  s t reng th  of  the  rock  in which the 
fault  forms be ing  a p p r o x i m a t e l y  cons tan t  as the  faul t  
grows. Whi le  these  condi t ions  may  d e p e n d  in deta i l  on 
the  tec tonic  e n v i r o n m e n t  or ,  for  e x a m p l e ,  var ia t ions  in 
rock type ,  they  do not  d e p e n d  on w he the r  the  fault  is a 
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Fig. 6. Different possible solutions to the fault model (equations 3 and 5): (a), (d), (g) & (j) show how the boundary 
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two-dimensional or a three-dimensional structure. 
However, it is probable that a constant geometrical 
factor in the scaling relationship will differ between 
small and large faults. For example, in simple elastic 
crack theory a circular crack in a volume (cf. small fault) 
has a ratio of maximum displacement to crack diameter 
that is 1.8 times larger than the ratio dma×/L of a 
two-dimensional crack in a plate (cf. large fault), all 
other variables remaining the same. 

COMPARISON OF OBSERVATIONS WITH 
MODEL PREDICTIONS 

The fault model described above relies on an oversim- 
plification of inelastic deformation in rock around the 
fault tip. It assumes that the deformation is confined to a 
narrow zone extending in the plane of the fault and 
reflects the gradual mechanical breakdown of the sur- 
rounding rock to form a through-going fault. All the 
deformation involved in forming a through-going fault is 
represented in the model by an excess frictional resist- 
ance near the fault tip. The frictional breakdown zone of 
a fault is thus defined as a zone along the perimeter of the 
fault surface where the frictional resistance to sliding 
exceeds that on the well-developed central portion of 
the fault. As a consequence of using these assumptions, 
the model predicts several aspects of faulting that are 
consistent with observations. 

Fault displacement profiles 

The model predicts that the displacement on a fault 
decreases gradually towards the fault tip. Measured 
fault displacement profiles are characterized by finite 
displacement gradients at the tip and the gradients 
usually decrease towards the tip (e.g. Fig. 2). The fault 
displacement data shown in Fig. 7 are plotted as a 
function of distance from the center of the fault out to 
the tip, and the displacements and lengths are normal- 
ized to the largest value in each case, in order to show 
profiles for a range of fault sizes. For comparison, the 
displacement profile predicted by a simple LEFM model 
is also shown which plots as a circle on the normalized 
axes. Figure 7(a) shows seven displacement profiles 
collected by Muraoka & Kamata (1983) along normal 
faults exposed in lacustrine sediments in Japan. The 
measurements were made parallel to the slip vector, i.e. 
in the down-dip direction. In some cases lithologic 
variations in the sediments clearly modified the displace- 
ments recorded by Muraoka & Kamata (1983) so the 
data shown in Fig. 7(a) are restricted to those faults 
confined primarily to one lithology. The faults in this 
data set range in length from tens of centimeters to a few 
meters and have maximum displacements that are less 
than 10 cm. Figure 7(b) is taken from Walsh & Watter- 
son (1987, their fig. 1) who compiled detailed measure- 
ments of displacement along normal faults in the Coal 
Measures in Britain. In this case the measurements were 
made along strike profiles, perpendicular to the slip 
vector and approximately parallel to the stratigraphy, so 
that the data are mostly obtained within the same 

lithoiogy. The bold line in Fig. 7(b) is a composite 
displacement profile constructed from 34 individual pro- 
files (see Walsh & Watterson 1987, their table 1). The 
faults in this data set range in length from several 
hundred meters to a few kilometers and have maximum 
displacements on the order of a few tens of meters. In 
both Figs. 7(a) & (b) the circular profile predicted by the 
elastic model ovbrestimates the displacement at all 
points along the fault trace away from the maximum 
displacement. The profiles shown in Fig. 7(a) are 
approximately linear. The composite profile shown in 
Fig. 7(b) does exhibit a gradually increasing displace- 
ment gradient out to a distance of 0.5, a weak inflection 
at about 0.6, and then a decreasing displacement gradi- 
ent towards the tip, as would be predicted by the 
Dugdale model (Figs. 3 and 5). Furthermore, the dis- 
placement profile shown in Fig. 7(b) implies that the 
inelastic zone, s, is a significant proportion of the total 
length of the fault, perhaps as much as 20%, i.e. the ratio 
s/L approximately equals 0.2. Also the displacement, 
do, measured at the infection point, is as much as 35% of 
the maximum fault displacement, i.e. the ratio do/dmax 
approximately equals 0.35. 

Figure 8 shows displacement profiles from faults over 
a range of scales. The profiles are plotted from the center 
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Fig. 7. Normalized fault displacement profiles (solid lines) compared 
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1991). (b) Displacement profile along a normal fault in British coal- 
fields (from Walsh & Watterson 1989) with fault trace is shown above. 
(c) Displacement profile from a normal fault in lacustrine sediments in 
Japan (from Muraoka & Kamata 1983). The parameters d o and s, 

where they can be estimated, are also shown. 

of the fault, where the displacement is greatest, out to 
the tip of the fault where the displacement dies to zero. 
Figure 8(a) is the topographic profile along the Wasatch 
Mountains which represent the uplifted footwall block 
along the Wasatch fault in the Basin and Range Province 
of the western United States. The Wasatch fault is 
approximately 360 km in total length (see Schwartz & 
Coppersmith 1984, Machette et al. 1991). The accumu- 
lated displacement along the fault zone is reflected by 
the height of the topography above the surrounding area 
which is approximately 3 km in the center of the fault. At 
the segment boundary between the Levan and Fayette 
segments there is an inflection point in the topographic 
profile separating the region of high elevations along the 
central part of the mountain range and the much lower 
elevations along the Fayette segment (see Fig. 8a). We 

suggest that the frictional breakdown zone of the macro- 
scopic fault zone, indicated by s in Fig. 8(a), might be 
represented by the pattern of segmentation near the 
zone ends. In this case the ratio s/L approximately 
equals 0.14. 

Figure 8(b) shows the fault trace and displacement 
data from a normal fault in the British coalfields pub- 
lished by Walsh & Watterson (1989). The distance from 
the center of the fault out to the fault tip is approxi- 
mately 600 m and the maximum displacement on the 
fault is approximately 3.5 m. The displacement profile 
along the fault trace was obtained by summing the 
displacements on several strands. Walsh & Watterson 
(1989, 1991) demonstrate that together the separate 
strands behave as a single fault giving an overall tapered 
displacement profile. In this case, the shape of the 
displacement profile is quite similar to that predicted by 
the Dugdale model (Fig. 5). An inflection point in the 
profile occurs about 250 m from the fault tip and the 
displacement at this point is about 1.5 m. Therefore,  
according to our interpretation the ratio s/L approxi- 
mately equals 0.2, and the ratio do/dmax approximately 
equals 0.4. 

Figure 8(c) shows the displacement profile along a 
fault of only 1 m or so in length mapped by Muraoka & 
Kamata (1983). This fault, as well as other faults of 
similar size mapped by these workers and shown in Fig. 
7(a), consists of a single strand. In contrast to the 
profiles shown in Figs. 8(a) & (b) the profile shown in 
Fig. 8(c) is approximately linear over its extent. These 
faults formed in poorly consolidated sediments. There- 
fore, one interpretation of these data is that the inelastic 
deformation is spread throughout the volume around 
the fault rather than localized at the fault tip. For 
example, linear crack opening displacement profiles are 
observed for tensile cracks in materials that exhibit 
large-scale plasticity (Kanninen & Popelar 1985). 

The model presented here predicts that the stronger 
the rock in the vicinity of the tip, the more rapidly the 
displacement will die out towards the tip because the 
length of the breakdown zone, s, is inversely related to 
shear strength (e.g. see Fig. 3b). The discussions above 
assume the case of an isolated fault in a uniform applied 
stress field. In the case where two neighboring faults 
overlap, one may shield the other by locally reducing the 
applied stress, or alternatively may enhance the applied 
stress so that the effective strength of rock near the fault 
tip is increased. Muraoka & Kamata (1983), Walsh & 
Watterson (1989), Peacock (1991) and Peacock & San- 
derson (1991) have found that the displacement gradient 
near the ends of fault segments is steeper if they overlap 
in this way. 

Fault scaling relationships 

The predictions of the model shown in Fig. 6 can be 
compared directly with fault displacement data. 
Measurements of the parameters d . . . .  L and estimates 
of do and s, have been obtained from an interpretation of 
displacement profiles along coalfield faults compiled by 

SG 14:10-£ 
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shown in bold. 

Walsh & Watterson (1987), and described above with 
reference to Fig. 7(b). In our interpretation, s is 
measured from the inflection point in a displacement 
profile out to the fault tip and do is the displacement at 
the inflection point (see Figs. 5 and 8, and discussion 
above). Figures 9(a) & (b) show the variation of dma x 
and s as a function of the half length or radius of the 
faults, L/2, each interpreted in the way shown in Fig. 
8(b). For these coalfield faults s correlates linearly with 
L giving a constant ratio s/L of 0.18 (Fig. 9b). The data 
on d . . . .  are more scattered but yield a value for the ratio 
dm~,x/L of approximately 6.0 x 10 -3 (Fig. 9a). Figure 
9(c) shows that the ratio do/dmax is approximately con- 
stant with a value of 0.35. The data shown in Fig. 9 are 
therefore most consistent with the solution shown in 
Figs. 6(j), (k) & (1) which predicts that the ratios 
do/dm~ ×, s/L and dmax/L should be constant, i.e. these 
ratios should be independent of fault length. 

An alternative interpretation of the variation ofs or do 
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Fig. 10. Plots of dma x and L measured for faults in different tectonic 
regions and rock types. In order to compare data from very different 
length scales, the units on the axes vary between the data sets: 
Muraoka & Kamata (1983), normal faults in lacustrine sediments in 
Japan, lengths and displacements are both in centimeters; Elliott 
(1976), thrust faults in Canadian Rockies, lengths and displacements 
are both in kilometers; Opheim & Gudmundsson (1989), normal faults 
in Iceland, displacements and lengths are both in hundreds of meters; 
Villemin et al. (in press), normal faults in Lorraine Coalfield in France, 
lengths and displacements are both in kilometers. The estimated value 

of the ratio dmJL is shown in bold in each case. 

with L shown in Fig. 9 is that these data may be reflecting 
different structural levels at which the displacement 
profiles were obtained. For example, s decreases if 
( O o - o t )  increases at greater depths (according the 
equation 2), so that two faults with different lengths 
sampled at different structural levels could yield the 
same s/L ratio, but if sampled at the same structural level 
may in fact yield different s/L ratios. However,  it is hard 
to attribute the constant s/L ratio shown in Fig. 9(b) to a 
sampling effect, especially for an arbitrary sample of 
faults in a population. 

Other available data sets, shown in Fig. 10, from faults 
in a variety of different tectonic regions and rock types 
have also been found to exhibit a linear relationship 
between d . . . .  and L. Opheim & Gudmundsson (1989), 
in their study of normal faults in Iceland obtained a ratio 
dm~×/L of about 1.2 x 10 -2. For normal faults in the 
Lorraine coalfield in NE France, Villemin et al. (in 
press) obtained 3.0 x 10 - 2 .  Unpublished data of Elliott, 
from thrust faults in the Canadian Rockies (see Elliott 
1976 for some of these data), gives a ratio of about 
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6.0 x 10 -2. Muraoka & Kamata (1983) estimated a 
value for this ratio of 1.2 x 10 -2 for the meter-scale 
faults they mapped in Japan. The correlation between 
fault displacement and fault length has been variously 
interpreted by other workers (Watterson 1986, Walsh & 
Watterson 1988, Marrett  & Allmendinger 1991). Else- 
where we provide a detailed discussion of the topic 
(Cowie & Scholz 1992b). However,  we use these ratios 
below to estimate in situ values of rock shear strength for 
each data set, using the mathematical description of the 
fault model. 

Deformation mechanisms near the fault tip 

We have assumed in this model that the inelastic 
deformation is dominated by fracturing and frictional 
wear. Pressure solution and ductile flow may also be 
important deformation mechanisms particularly in sedi- 
mentary rocks such as limestone. Our interpretation of 
the linear displacement profiles shown in Figs. 7(a) and 
8(c), discussed above, was that the soft sediments in 
which these faults form may exhibit large-scale plasticity 
rather than localized inelastic deformation at the fault 
tip. In contrast, from their observations of faulting in 
Coal Measure rocks, Walsh & Watterson (1987) de- 
scribed a monoclinal fold formed at the tips of laterally 
propagating normal faults and suggested this phenom- 
ena was analogous to the ductile bead of Elliott (1976) 
(see Introduction). In detail then, the deformation 
mechanisms occurring near the ends of a fault may be 
quite variable. 

An illustration of the meaning of the breakdown zone 
of a natural fault is given in the map of a fault in the 
South Iceland seismic zone shown in Fig. 11. This fault 
was covered by several tens of meters of lava flows 
during Holocene times. In 1912, the fault ruptured in a 
strike-slip earthquake and propagated up into overlying, 
previously unfaulted, lava beds producing an en 6chelon 
array of tension fractures. The Iceland fault, as presently 
exposed at the surface, corresponds approximately to 
stage 1 of the fault model (Fig. 4). If the fault were to 
rupture again, the tension fractures now observed at the 
surface would begin to link up forming an irregular 
discontinuous fault trace. Only after several ruptures 
would a well developed fault eventually be formed 
(Cowie 1992, Chap. 3). 

Fault tO) strain field 

According to the proposed fault model, the magni- 
tude of the elastic stress or strain concentration beyond 
the end of the inelastic zone depends on the shape of the 
displacement distribution on the fault. Using a boundary 
element model, Chinnery & Petrak (1967) showed that a 
decreasing displacement gradient towards the fault tip, 
as predicted by the fault model, spreads the stress and 
strain concentration over a larger area. From detailed 
strain analyses, Hildebrand-Mittlefehldt (1979, 1980) 
found that the strain fields around the ends of an experi- 
mentally generated fault in clay and a naturally occur- 

ring normal fault were more consistent with Chinnery & 
Petrak's (1967) solution for a smoothly decaying dis- 
placement distribution than the solution for an abrupt 
termination in the displacement. 

In the adaptation of the Dugdale model to faults, 
described above, the boundary of the frictional break- 
down zone is related to a critical displacement d o, on a 
planar fault surface. In nature, the frictional breakdown 
zone of a fault probably coincides with a transition from 
three-dimensional distributed deformation to displace- 
ment localized on a sliding surface. The boundary of the 
frictional breakdown zone occurs, in this case, where 
deformation near the fault tip eventually becomes local- 
ized to form a through-going fault. This critical amount 
of strain required to focus the deformation can be 
represented by the ratio do/s. For the Coal Measure 
faults discussed in relations to Figs. 7-9 this ratio is 
approximately 1.5 × 10 -2, which implies 1.5% strain. 

ESTIMATES OF IN SITU ROCK PROPERTIES 

Shear strength of rock 

Using the fault model described in this paper, it has 
been shown that for a fault loaded by a constant remote 
stress, o~,, and formed in rock with shear strength, o,,, 
the maximum displacement on the fault is linearly re- 
lated to its length. Modifying equation (5) to include the 
residual frictional stress on the fault, of, the ratio dma×/L 
is given by: 
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Fig. l 1. Surface rupture of the 1912 earthquake in the South Iceland 
seismic zone. (a) Map showing the entire rupture zone, indicated by 
the heavy bold lines, where it is exposed in pahoehoe lava flows in 
southern Iceland. (b) Detailed map of a segment of the rupture 
showing the relationship between en 6chelon arrays of tension frac- 
tures and compressional 'push-ups' where the lava flow has been 
domed up between the ends of the fractures. Location shown in inset. 
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d m a x _ ( 1 - v ) ( a o - a f ) [ c o s 0 2 1 O g e ~ 0 2 + l ) 2 1 .  (10) 
L 2:r/x [ tsm 02 1)2J 

From equation (4), 02 equals cos- '  (1-2(s /L)) ,  where 
the ratio s/L is given by (from equation 2): 

S ~ 7g 2 (O a --  O'f) 2 (11) 
L 16 (ao - af) 2 

Substituting the values for d m J L  (6.0 x 10 -3) and s/L 
(0.18) determined for the coalfield faults, and shown in 
Fig. 9, into (10) and (11) estimates of ao and aa can be 
obtained. The shear modulus of Coal Measure rocks, B, 
is assumed to be 10 GPa (see Walsh & Watterson 1988). 
A lower value of af is taken to be approximately 10 MPa 
from heat flow measurements, hydrofracture experi- 
ments and well bore breakouts in the vicinity of the San 
Andreas fault. An upper limit on af of 50 MPa is 
calculated by assuming Coulomb friction with a friction 
coefficient of 0.75, a vertical stress equal to the litho- 
static pressure under hydrostatic conditions, and by 
taking the maximum depth of formation of the faults to 
be 5 km. For of equal to 50 MPa we find that Oo is 
approximately 240 MPa (2.4 kbar) and a a is approxi- 
mately 160 MPa (1.6 kbar), while if of is only 10 MPa, a o 
is 200 MPa (2.0 kbar) and a~ is 110 MPa (1.1 kbar). From 
these calculations it is found that o~ ~ 0o/2. 

Using equation (9), we can calculate independent 
estimates of these same parameters, i.e.: 

do _ do d . . . .  2 (1 - v)(Oo - aO cos 02 [log~ (sec 02)] 
L dma x L ~/~ 

(12) 

and do/dma~ = 0.35. In this case, if of is 50 MPa, a o is 
approximately 220 MPa (2.2 kbar) and o, is approxi- 
mately 140 MPa (1.4 kbar), while if of is only 10 MPa, ao 
is 180 MPa (1.8 kbar) and a~ is 100 MPa (1.0 kbar). 

According to (10) the observed range of the ratio 
dmax/L shown in Fig. 10 is reflecting changes in/~ and Oo 
of the rocks in which these faults formed as well as the 
ratio (a~ - af)/(a o -- at ). Both/~ and Oo depend on 
lithology; a~ will depend on the tectonic environment. 
According to (10), if a~ is constant, larger values of the 
ratio dmax/L imply larger values of %, and if/z increases 
ao must also increase for a given dmax/L ratio. 

Figure 12 shows the variation in the ratio dm~×/L as a 
function of ao plotted for different values of kt and at, 
(using 10) Poisson's ratio v was taken to be 0.2. Shear 
modulus, kt, varies with confining pressure particularly 
at low pressures because of the effect of crack closure 
and porosity reduction (e.g. Birch & Bancroft 1938, 
Brace 1964, Birch 1966). For example, in laboratory 
experiments ¢t typically increases by a factor of 1.5-2.0 
up to pressures of 100 MPa. Assuming that confining 
pressure depends only on depth of burial then, for a 
crusty density of 2600 kg m -3, confining pressure in- 
creases by approximately 26 MPa km -~. At this rate 
laboratory values for/z would not be achieved shallower 
than approximately 4 km in the crust. This effect is likely 
to be greater in the crust because it contains much larger 

cracks than a laboratory sample. Furthermore, labora- 
tory values are usually obtained from the shear wave 
velocity in a sample and these can exceed the static value 
o f #  by 10-20% (e.g. Birch 1961, Judd 1964). In these 
calculations we use static values of /z, measured at 
pressures of -<50 MPa, as follows: poorly compacted 
sedimentary rocks, /x = 3 GPa; crystalline rocks at 
shallow crustal depths and compacted sedimentary 
rocks, /~ = 10 GPa; crystalline rocks at seismogenic 
depths,/~ = 15 GPa. Finally, these values for/~ are still 
likely to be overestimates of the shear modulus of the 
crust that would be effective at geologic strain rates. 

In Fig. 12, we see that low displacement-length ratios 
for faults (i.e. 1.0 x 10-~5 x 10 -3) predict rock 
cohesive strengths in the range of 100-400 MPa (1-4 
kbar) over the whole range of values of/~. Larger ratios 
of 5 x 10 2 may be achieved in rocks with relatively low 
shear rigidities (/t = 3 GPa) without requiring exception- 
ally large shear strengths (-<400 MPa). Ratios of 5.0 x 
10 -2 or greater in materials with a high shear modulus 
implies much larger shear strengths of 1.5-2 GPa (15-20 
kbar), which are greatly in excess of laboratory esti- 
mates of shear strength at low confining pressures. Rock 
shear strength, ao, increases with increasing confining 
pressure and thus with depth in the crust. In experimen- 
tal studies of rock fracture the strength of Westerly 
granite increases by approximately 5 MPa for an in- 
crease in confining pressure of 1 MPa (e.g. see Scholz 
1990; fig. 1.12). Under ambient pressure and tempera- 
ture conditions Westerly granite has a shear strength of 
250 MPa. At a rate increase of confining pressure of 26 
MPa km 1, the strength of the bulk rock increases by 
130 MPa km- ' .  Therefore shear strengths on the order 
of GPa may be achieved at depths of -> 10 km in the crust 
where the confining pressure exceeds 200 MPa (2 kbar). 
Note that at these depths, ductile deformation may be 
more important than brittle deformation. 

In order to interpret the variation in fault 
displacement-length ratios shown in Fig. 10 in terms of 
rock properties, the ratio s/L, determined from coalfield 
faults, is assumed to be the same for all the data sets. 

3000 Elliott ( 1 9 7 7 ~  / 

2500 15GPal 0~Pa 

1500 
Opheim & et al 
Gudmundsson ( 1 9 8 9 ) / , / ~ i  9;2~ ~' 

,000 Wa,sh  \ / ' /  " J 
500 Watterson ~ ~ . " ~ "  3GPa 

0 . . . . . . . . . . . .  t t t t - - - ' - - ] " "  . . . . . .  i . . . . . . . .  

.001 .0 l  ) 

dmax /L 

Fig. 12. Plot of rock shear strength o 0 as function of the ratio dma x/L for 
different values of~  = 3, 10 and 15 GPa,  using equation (10) with 02 = 
0.88. Two curves are shown for each value of/~: dashed lines corre- 
spond to of = 10 MPa; shaded lines correspond to of = 50 MPa. Shaded 
circles indicate the location of the data sets shown in Figs. 9 and 10. 

Note that the horizontal axis is logarithmic. 
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Note that assuming a constant value for s/L is equivalent 
to assuming a constant value for the ratio (Oa - of)/ 
(Oo - af) (equation 11). This value for s /L is unlikely to 
be the same for faults from such different tectonic 
environments. However ,  the calculation is fairly 
insensitive to this parameter  for 0.1 < s/L < 0.2 which 
we believe to be a reasonable range of variation (see 
discussion above with reference to Figs. 7-9). Taking the 
range of values of dmax/L for each data set shown in Fig. 
10 and assuming a probable value for p in each case we 
have calculated a value for o o (Fig. 12). The large values 
of dmax/L for the faults in Elliott's unpublished data set 
and Villemin et al. 's (in press) data set are likely to be 
reflecting the fact that these faults penetrate to greater 
depths in the crust. 

Any interpretation of these results is subject to the 
assumption that the mapped length of faults corresponds 
to the total length including the inelastic zone of the 
fault, s. As displacement towards the end of a fault is 
small and perhaps distributed over several fault strands 
there is a tendency to underestimate the length. As s 
apparently scales with L, L will always tend to be 
underestimated so that dmax/L and thus ao are overesti- 
mated. Furthermore,  the model assumes that the ob- 
served displacement profile supports a corresponding 
elastic stress in the surrounding rock and does not allow 
for stress relaxation by bulk deformation during pro- 
longed fault growth. If stress relaxation is an important 
effect, due to compaction, for example, in sedimentary 
rocks, then the measured displacement-length ratio will 
overestimate the in situ rock strength. 

Fracture energy 

In LEFM theory, the condition for crack propagation 
occurs when the stress intensity factor, K, at the crack tip 
reaches a critical value called the fracture toughness, K~. 
The fracture energy, G, is proportional to (K~) 2. In the 
fracture mechanics literature, the parameters,  K¢ and G 
are considered to be properties of the material and thus 
should be constant for a given rock type. 

Estimates of G from experimental work and earth- 
quakes do, however, show systematic variations that can 
not simply be attributed to differences in rock type (see 
Li 1987). Estimates of G from laboratory experiments of 
shear fracture development in intact samples are 
approximately 104 J m -2. Martel & Pollard (1989) 
calculated similar values of G based on their field obser- 
vations of slip on m-scale faults in granitic rocks. How- 
ever, much smaller values of G (10-102 J m -2) have been 
obtained from experiments using samples with an arti- 
ficially introduced slip surface (e.g. Okubo & Dieterich 
1984). In contrast, estimates of G from earthquakes are 
in the range 106 - 107 J m -2. The experimental work of 
Lockner et al. (1991) demonstrated that G varies, by 
perhaps a factor of two, depending on whether a shear 
crack is propagating under Mode II or Mode III con- 
ditions. Furthermore,  shear fracture experiments show 
that G increases with increasing normal load (e.g. Cox & 
Scholz 1988a). 

Li (1987) suggests that differences in G reflect the fact 
that the surface roughness of natural faults and fractures 
is much greater than that of artificially cut surfaces. 
Similarly, Martel & Pollard (1989) suggest that larger 
values of G determined from earthquakes on major fault 
zones, reflect the increased structural complexity of 
crustal-scale faulting compared to the outcrop-scale 
faults they mapped. Here we show that the range of 
estimates of G can be reconciled if each measurement is 
interpreted in terms of the critical crack length, Lc, at 
which an instability in crack growth occurs. In experi- 
mental studies, for example, Lc is the critical crack 
length formed in a sample when it fails (Lois mm to cm). 
For earthquakes, Lc is the critical rupture dimension at 
which the rupture starts to propagate dynamically (Lc is 
1-100 m). 

For a cohesion zone crack model, such as that pro- 
posed for faults in this paper, Rice (1968) showed that 
the work done per unit length in propagating the crack, 
per unit width of the crack front, is given by: 

G = [a(d) - or]' dd, (13) 

where o(d) is the variation in frictional resistance in the 
cohesion zone as a function of the displacement near the 
crack tip. The cohesion zone in this case is equivalent to 
the frictional breakdown zone, s, in the fault model, and 
do is the breakdown displacement. According to the 
model considered here (a(d) - of) is a constant equal to 
(ao - af), so that integrating equation (13) we get: 

G = ( a o -  a f ) 'do .  (14) 

Using the expression for d o given in (9), (14) becomes: 

G = 2 (1 - v) L (ao - of) 2 cos 02 [log e (sec 02)]. (15) 
Jp  

Substituting into (15) the values of the various para- 
meters determined for the coalfield faults above we find 
that G ~ 5.0 x 105 L J m  2, where L is measured in 
meters. Therefore,  if L equals 1 mm-1 cm, G equals 5.0 
x 102-5.0 x 103 J m -2 which agrees well with laboratory 
measurements. If L = 100 m, the upper estimate for 
earthquake ruptures, G = 5.0 x 107 J m -2 according to 
this calculation. However,  earthquakes rupture a pre- 
existing fault rather than intact rock so that it is more 
appropriate to use a stress difference (Oo - of) compar- 
able to earthquake stress drops, e.g. 10 MPa, in which 
case the calculated value for G is approximately 1.0 x 
105Jm 2 

Rice (1968) showed that if the size of the cohesion 
zone is sufficiently small so that frictional stresses on the 
crack faces can be ignored then G is just the elastic strain 
energy release rate (see Li 1987, equation 9.12). In 
general, G includes frictional dissipation. Whether  fric- 
tion is considered or not, the expression for energy 
release rate (i.e. fracture energy), of a crack of finite 
length in a material that deforms elastically (away from 
the immediate vicinity of the crack tip itself), includes 
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the term (stress)2L (e.g. equation 15, and see Li 1987, 
equation 9.7). In this case, G is only a constant if both 
stress and crack length, L, are constant or stress varies 
systematically with L. The simplest interpretation, 
therefore,  of the observed variation in G, is that the 
value of G corresponds to a critical crack or rupture 
dimension (i.e. L = L~). 

SUMMARY AND CONCLUSIONS 

A post-yield fracture mechanics model, originally 
developed by Dugdale (1960) for Mode I cracks, is 
applied to the problem of accounting for the inelastic 
deformation involved in the formation and growth of a 
fault. The Dugdale model allows a simple physical 
model for a fault to be developed which does not require 
the details of the deformation at the fault tip to be 
specifically described. In this model, all inelastic defor- 
mation mechanisms are represented together by an 
increased frictional shear resistance around the perim- 
eter of a planar fault surface. At the tip of the fault, 
where fractures are first formed but the fault is not well 
developed, the displacement is small and consequently 
the resistance to sliding is high; as the displacement 
tends to zero the frictional resistance approaches the 
shear strength of the surrounding rock. Towards the 
center of the fault, where the displacement is greater, 
the frictional resistance is decreased as the sliding sur- 
face develops due to mechanical breakdown of the rock. 

The model is a plane strain or two-dimensional model 
and thus strictly speaking applies to large faults. How- 
ever, the conceptual framework of this model applies 
equally to small faults. The model is parameterized by 
the maximum displacement on the fault, d . . . . .  the 
breakdown displacement, do, and the mapped trace 
length of the fault, L, which includes the frictional 
breakdown zone of length s. In the model, the break- 
down displacement, do, is achieved at the transition 
from an immature fault near the tip, to the well- 
developed central portion of the fault. The breakdown 
zone is the zone around the perimeter of the fault surface 
where the frictional resistance to sliding is in excess of 
that required to slip on the well developed central 
portion of the fault. For natural faults, the breakdown 
zone represents inelastic deformation near the fault tip 
which may be distributed in a volume; in this case, the 
ratio d,,Is can be thought of as the amount of shear strain 
at the tip of the fault necessary to focus distributed 
deformation into a through-going fault. 

The model requires that the stress at the tip of a fault is 
finite and, moreover ,  can not exceed the shear strength 
of the surrounding rock. For an actively growing fault, 
rock at the fault tip is always at the point of failure while 
away from the fault, rock still deforms elastically. The 
specific deformation mechanism by which a fault fulfills 
the finite stress condition does not change the con- 
clusions of the model. For example, this model does not 
require any assumptions to be made about how slip 

events on the fault are distributed to give the accumu- 
lated displacement profile, or whether fault linkage is a 
dominant growth mechanism. The model predicts the 
tapered shape of observed fault displacement profiles 
and provides expressions that relate the displacement 
distribution to the material properties of the surround- 
ing rock. 

Using this model we show that, for a fault loaded by a 
constant remote stress, the maximum displacement on a 
fault is linearly related to its length. The constant of 
proportionality depends on the ratio (o o - ot-)//x, where 
o,, is the shear strength of the surrounding rock, of is the 
frictional resistance on the well-developed central 
portion of the fault and ,u is the elastic shear modulus. 
Both oo and/~ vary with lithology, while Oo, ~ and of all 
vary strongly with confining pressure. Therefore  this 
model predicts that faults in different tectonic regions 
and rock types will have a different ratio of displacement 
to length. This is consistent with available fault data sets. 
For a constant stress boundary condition, the size of the 
frictional breakdown zone and the breakdown displace- 
ment scale with the length of the fault. Consequently, we 
conclude that a fault maintains a self-similar displace- 
ment profile and structure through time. 

Fault displacement-length data are used to estimate 
in situ values of the shear strength of rock. Using model 
parameters derived from an analysis of published data 
from British coalfield faults and assuming values for/J 
determined from laboratory measurements at tempera- 
tures and pressures representative of the crust, the 
following estimates of oo are obtained: weak sedimen- 
tary rocks, 100 MPa (/~ = 3 GPa); indurated sedimentary 
rocks or fractured crystalline rocks, 100-500 MPa 
(u = 10 GPa); crystalline rocks (at mid- to lower-crustal 
depths) I-3 GPa ~ = 15 GPa). Values of o,, obtained 
from fault data must be interpreted in terms of rock type 
in which the fault forms, the depth of formation, and 
variation in normal stress in the vicinity of the fault tip 
due to, for example, interaction with neighboring fault 
segments. The derived values of oo provide an upper 
estimate of in situ rock shear strength because the model 
does not allow for any relaxation of the stress field 
around the fault tip through time. However,  according 
to these results the strength of the intact crust is much 
greater (by perhaps as much as 5-10 times) the frictional 
strength of through-going faults. 

Finally, the expression for fracture energy derived for 
this model shows that if the breakdown displacement 
scales with fault length then fracture energy also scales 
with fault length. From the model we conclude that large 
variations in fracture energy measured from laboratory 
experiments, faults and earthquakes reflects large 
differences in the crack or rupture dimension at which an 
instability in growth occurs. 
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